Acquisition of PeroxyChem

FUTURIZE PEROXIDE

8 November 2018
Disclaimer

These materials may contain forward-looking statements based on current assumptions, forecasts and expectations made by Evonik Industries AG's management and other information currently available to Evonik Industries AG.

In so far as forecasts or expectations are expressed in this presentation or where our statements concern the future, these forecasts, expectations or statements may involve known or unknown risks and uncertainties. Actual results or developments may vary, depending on changes in the operating environment.

Neither Evonik Industries AG nor its group companies assume an obligation to update the forecasts, expectations or statements contained in this release. No reliance may be placed for any purposes whatsoever on the information contained in this presentation or on its completeness. No representation or warranty, expressed or implied, is given by or on behalf of Evonik Industries AG or any of its affiliates, directors, officers or employees, advisors or any other person as to the accuracy or completeness of the information or opinions contained in this document, and no liability whatsoever is accepted for any such information or opinions or any use which may be made of them.
Acquisition highlights

- Strengthening of Evonik’s growth segment Resource Efficiency
- Focus on environmentally-friendly specialty applications
- Attractive end-market growth with low cyclicality
- Excellent fit with Evonik’s peroxide portfolio – expansion of business in North America
- EBITDA margin of ~20% above Evonik’s average group margin
- Strong FCF generation with sustainable FCF conversion >60%
- Fair valuation with EV / adj. EBITDA multiple 7.8x (incl. synergies)
Strengthening growth segment Resource Efficiency
One of the most versatile and sustainable chemicals available

Hydrogen peroxide (H₂O₂) and Peracetic acid (PAA)

- **Diverse applications and high importance of application development**: to commercialize new and enhanced products, technologies and services
- **Sustainability**: stricter environmental regulations as growth driver for environmentally-friendly peroxide applications
- **Highly contract-based business**: longstanding customer relationships with high share of revenue under contracts of >1 year
- **Resilience**: attractive margin profile with minimal raw material volatility or seasonality in demand
- **Asset set-up and logistics**: customer proximity, supply security and logistics as decisive factors

Resilient and attractive business profile
PeroxyChem – Overview
A global manufacturer and supplier of peroxides

- PeroxyChem is a global manufacturer and supplier of hydrogen peroxide (H$_2$O$_2$), peracetic acid (PAA) and persulfates (PS)
- Headquarter in Philadelphia, Pennsylvania
- Ownership: Private equity (One Equity Partners)
- Founded: 1900s (Foret and Buffalo Electro-chemical Co.)
- Headcount: ~600 globally, thereof ~20% in application development, sales and marketing
- Locations: 8 manufacturing facilities (USA, Canada, Germany, Spain, Thailand), 2 distribution facilities, 5 regional offices, 3 R&D labs

Sales 2018E: ~$300 m
adj. EBITDA 2018E: ~$60 m
adj. EBITDA margin: ~20%
Acquisition of PeroxyChem
Excellent complementary fit with Evonik’s existing peroxide business

<table>
<thead>
<tr>
<th>Evonik Business Line Active Oxygens</th>
<th>PeroxyChem’s peroxide portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Business</td>
<td>Standard Business</td>
</tr>
<tr>
<td>Specialties</td>
<td>Specialties</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>H₂O₂</td>
</tr>
<tr>
<td>PAA</td>
<td>PAA</td>
</tr>
<tr>
<td>HPPO</td>
<td>HPPO</td>
</tr>
</tbody>
</table>

- Market growth 3% p.a.
- Market growth 6% p.a.

Combined sales\(^1\): > €700 m

1. Sales of Evonik Business Line Active Oxygen and PeroxyChem
Attractive peroxide applications
Focus on specialty applications with strong secular growth drivers

Specialties

<table>
<thead>
<tr>
<th>Industry</th>
<th>Environmental</th>
<th>Electronics</th>
<th>Food & Beverage</th>
<th>Other specialties</th>
<th>Process Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application fields</td>
<td>▪ Solutions for waste water treatment, soil remediation and groundwater treatment
▪ H₂O₂ and PAA as alternative to chlorine</td>
<td>▪ Ultra-pure hydrogen peroxide as cleaning agent in semiconductor Fabs</td>
<td>▪ PAA as disinfectant in poultry & beef processing
▪ Aseptic packaging with H₂O₂ and PAA</td>
<td>▪ Medical, consumer and personal care applications such as sterilization of medical equipment and contact lens solutions
▪ Energy: Persulfates and PAA in hydraulic fracturing</td>
<td>▪ Hydrogen peroxide for pulp and paper processing
▪ H₂O₂ and PAA in chemical synthesis</td>
</tr>
<tr>
<td>Growth driver</td>
<td>▪ Stricter environmental regulations
▪ Redevelopments of former industrial or military sites</td>
<td>▪ Growth of mobile devices
▪ Automatization and digitalization</td>
<td>▪ Stronger regulations for food safety
▪ Increased demand for convenient packaged food</td>
<td>▪ Increased regulations on cosmetic and care products for high purity grades
▪ Rising domestic oil and natural gas production</td>
<td>▪ Customer need for increased high product quality and supply security</td>
</tr>
<tr>
<td>Growth</td>
<td>5-6% p.a.</td>
<td>>7% p.a.</td>
<td>4-6% p.a.</td>
<td>3-5% p.a.</td>
<td>3% p.a.</td>
</tr>
</tbody>
</table>
Evonik and PeroxyChem specialty exposure
Expansion of high-growth and -margin specialty applications

Combined peroxide portfolio with higher specialty exposure

Share of specialty business increasing from ~50% to ~65%

Combined specialty applications Evonik and PeroxyChem
Impressive growth track record and attractive growth perspective
Earnings growth driven by portfolio shift to specialty business

<table>
<thead>
<tr>
<th>Resilient and strongly growing business (adj. EBITDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evonik</td>
</tr>
<tr>
<td>PeroxyChem</td>
</tr>
</tbody>
</table>

Future growth drivers

- **Sustainability** drives growing demand for environmentally-friendly specialty applications
 - e.g. **new Memphis plant** with long-term *take-or-pay contract* with City of Memphis for municipal wastewater treatment
- Increased exposure towards *specialty applications*
- **Optimization** in combined *asset set-up and logistics*
- Realization of *synergies*

Portfolio optimization:
- Successful strategic shift towards specialty applications
- Strong application development to commercialize new products

Introduction of new HPPO technology
- Higher share of specialty applications and optimization of logistics
- Acquisition and successful integration of assets, e.g. Delfzijl (NL) site in 2015
PeroxyChem – capital expenditures and free cash flow
Low capital intensity and attractive FCF conversion

Investing phase

Normalized capex

Free cash flow

>60% FCF conversion\(^1\)

- FCF in 2019 with integration costs and additional CAPEX for growth and production platform optimization
- Positive FCF in 1\(^{st}\) full year after closing, further ramping up in following years

\(\text{FCF} = \text{FCF conversion} \times \text{adj. EBITDA}\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capex</td>
<td>~10% capex/sales</td>
<td>~6% capex/sales</td>
<td>~6% capex/sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(e.g. new Saratoga (US) plant for electronic applications and new Memphis (US) plant for municipal wastewater treatment)

1. FCF conversion: FCF / adj. EBITDA
Synergies and integration costs
Tangible synergies driven by excellent strategic fit; low integration complexity

<table>
<thead>
<tr>
<th>Synergies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Savings in Production, Logistic</td>
</tr>
<tr>
<td>Cross Selling</td>
</tr>
<tr>
<td>SG&A</td>
</tr>
</tbody>
</table>

Total synergies:
~$20 m p.a.
fully realized by 2022

<table>
<thead>
<tr>
<th>Integration costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration costs (e.g. IT integration, consultants)</td>
</tr>
</tbody>
</table>

Expected cash-out of
~$20 m
in first 2 years

Integration costs excluding transaction costs
Attractive valuation

Enterprise Value

$625 m

adj. EBITDA 2018E

Synergies

adj. EBITDA incl. synergies

EV / adj. EBITDA 2018E

7.8x including synergies

10.4x excluding synergies

EPS accretive
in 1st full year after closing
Transaction summary

Structure
- 100% acquisition of PeroxyChem
- On a cash- and debt-free basis

Financing
- Financing secured via cash and committed credit facilities

Timing
- Approved by PeroxyChem Board and Evonik’s Supervisory Board
- Aiming for closing by mid 2019, subject to approval by responsible authorities
Acquisition highlights

- Strengthening of Evonik’s growth segment Resource Efficiency
- Focus on environmentally-friendly specialty applications
- Attractive end-market growth with low cyclicality
- Excellent fit with Evonik’s peroxide portfolio – expansion of business in North America
- EBITDA margin of ~20% above Evonik’s average group margin
- Strong FCF generation with sustainable FCF conversion >60%
- Fair valuation with EV / adj. EBITDA multiple 7.8x (incl. synergies)
Evonik portfolio strategy
Healthy mix of growth & financing businesses

Strengthen leading positions in attractive markets
- Strong growth profile
- Above-average returns
- Focus of capital allocation (capex, R&D, acquisitions)
- Examples: High Performance Polymers, Comfort & Insulation

Generating financing power
- Attractive market growth
- Below average capex allocation
- Stable returns and high FCF contribution
- Examples: Perf. Intermediates (C4), Active Oxygens, Oil Additives
PeroxyChem Business Overview

Hydrogen Peroxide (H₂O₂)
- Environmentally-friendly oxidizer and disinfectant, replacing chlorine derivatives
- Hydrogen and oxygen as primary raw materials
- H₂O₂ is purified and diluted to various concentrations depending on the end use application
- Purity grades range from standard grade for numerous industrial applications to ultra-high purity grades for electronics and propulsion
- Decomposes to yield only oxygen and water

Applications
- Electronics, Food Safety, Environmental, Medical, Energy, Process Chemicals

Peracetic Acid (PAA)
- PAA is an equilibrium mixture of hydrogen peroxide, acetic acid and water that is available in various grades
- Broad-spectrum sanitizer, disinfectant and sterilant, primarily used as an antimicrobial
- Easily dilutes in water and decomposes into non-toxic by-products
- Purified and diluted to various concentrations, ranging from 5% to 35% PAA in equilibrium solution
- Exceptional product stability, ensuring reliability and safety in production, transportation and usage

Applications
- Food Safety, Environmental, Medical, Energy, Process Chemicals

Persulfates (PS)
- Oxidizing agents manufactured as solid salts in an electrochemical process
- Ammonium, sodium and potassium persulfates used in a wide number of applications
- Key application for persulfates are in polymer initiation, soil and groundwater remediation and as a viscosity breaker in oil and gas fracking

Applications
- Electronics, Environmental, Personal Care, Energy, Process Chemicals
Specialty Application Example (1): Wastewater disinfection

PAA is expected to enjoy robust growth in the near future

Industry Overview and Growth driver

- Chlorine, sodium hypochlorite (NaOCl) or UV are today’s most commonly used technologies to disinfect wastewater

- PAA as “green” alternative gaining more and more relevance, with the following advantages:
 - vs Chlorine: low-capital alternative, eliminating safety risks
 - vs NaOCl: lower operating costs and elimination of by-products
 - vs UV: performance improvement, lower maintenance and capex spending

- PAA introduced in U.S. municipal wastewater market by PeroxyChem in 2013, as of today already approved by 14 U.S. states

Long-term take-or-pay contract with City of Memphis for municipal wastewater treatment, start of product delivery late 2018

Technologies

<table>
<thead>
<tr>
<th>Water Treatment Technology</th>
<th>Water Treatment Technology Growth Rate (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>5</td>
</tr>
<tr>
<td>NaOCl</td>
<td>-2</td>
</tr>
<tr>
<td>UV</td>
<td>111</td>
</tr>
<tr>
<td>PAA</td>
<td>-5</td>
</tr>
</tbody>
</table>

Wastewater Disinfection Alternatives

<table>
<thead>
<tr>
<th>Safe transportation and storage</th>
<th>Chlorine</th>
<th>NaOCl</th>
<th>UV Light</th>
<th>PAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low toxicity to aquatic life</td>
<td>X</td>
<td>x</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>No harmful disinfection by-products</td>
<td>X</td>
<td>x</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Effectiveness in low water quality</td>
<td>✔️</td>
<td>✔️</td>
<td>x</td>
<td>✔️</td>
</tr>
<tr>
<td>Low complexity of operation</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Low operating costs</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Low capital costs</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Specialty Application Example (2): Electronics
Ultra-high purity H₂O₂ essential in manufacturing of electronic devices

<table>
<thead>
<tr>
<th>Industry Overview and Growth driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Growing trend towards smaller electronic device geometries results in increasing number of process steps</td>
</tr>
<tr>
<td>▪ This requires ultra-high purity cleaning agents in semiconductor manufacturing - driving more demand for ultra-high purity H₂O₂</td>
</tr>
<tr>
<td>▪ High-purity, electronics-grade H₂O₂ is preferred because of their low cost, effectiveness and reduced waste disposal</td>
</tr>
<tr>
<td>▪ Electronic-grade H₂O₂ difficult to transport, as maintaining high quality requires specialized transportation equipment</td>
</tr>
<tr>
<td>▪ Geographic proximity is key to cost and reliability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturing Process Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PeroxyChem with dedicated electronic-grade H₂O₂ plant in Saratoga Springs close to end customer with long-term supply contract

1. Long-term 2017-2023E growth rate, according to Gartner, Mercury Research and Barclays Research | “nm” represents nanometers
Specialty Appplication Example (3): Food & Beverage

Stricter regulations in food & beverage processing offer further growth potential

Industry Overview and Growth driver

- **Increased demand for food safety as well as stricter regulations**

- **Poultry and meat processing:**
 - PAA replacing chlorine as primary treatment method for poultry due to superior efficacy

- **Beverage industry:**
 - Rising hygienic requirements for dairy products, juices or nutritional natural drinks
 - Aseptic packaging utilizes H_2O_2 or PAA for the sterilization of packaging material and machines
 - Extends shelf life and preserves flavor and taste
 - Can work with both polyethylene bottles and paperboard containers

Aseptic packaging – Spraying Technology
Combined production set-up
Strengthening of global position and stronger footprint in North America and Europe

- Prince George, BC – Canada
 - H_2O_2

- Tonawanda, NY – USA
 - PAA
 - PS

- Saratoga Spring, NY – USA
 - Purification facility
 - H_2O_2 Electronic Grade

- Rheinfelden – Germany
 - PS1

- Bayport, TX – USA
 - H_2O_2

- Memphis, TN – USA
 - PAA
 - Start delivery in late 2018

- Saraburi – Thailand (JV)
 - Thai Peroxide Ltd.2
 - H_2O_2
 - PAA

PeroxyChem
- Headquarters
- Manufacturing facility
- Regional office

EVONIK

21
Hydrogen peroxide is purified in a sequential process leading to different specialty grades for various applications.
HPPO Technology
HPPO process as more favorable process to produce propylene oxide

HPPO: Technology to manufacture propylene oxide (PO), a polyurethane (PU) precursor, on basis of H₂O₂

Intermediates
- Propylene
- Hydrogen Peroxide

Applications
- Polyols
- PU Foams
- Polyglycols
- Filler material
- Insulation of buildings
- Carpet underlay
- Seat cushion
- Elastomers
- Mattress

Benefits from HPPO technology
- Substantial cost advantages versus alternative processes
- More environmentally friendly, only water as side stream
- Own technology licensed by Evonik; Evonik as only grantor of a licence for HPPO
- Evonik and Dow/BASF only players with proprietary technology
- Cost advantage of new H₂O₂ plants will also allow to capture growth in other H₂O₂ applications besides HPPO

* Hydrogen Peroxide to Propylene Oxide